1s and 2s Tables

Fill in the missing numbers in each table. Read each math phrase out loud as you go. For example: one times zero equals zero times one equals zero. Fill them in one phrase (row) at a time.

1s Table

| 1 x | 0 | $=$ | x | 1 | $=$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | $=$ | x | | $=$ | 1 | |
| x | $=$ | x | | $=$ | 2 | |
| x | $=$ | x | | $=3$ | | |
| x | $=$ | x | $=$ | 4 | | |
| x | $=$ | x | $=$ | 5 | | |
| x | $=$ | x | $=$ | 6 | | |
| x | $=$ | x | $=$ | 7 | | |
| x | $=$ | x | $=$ | 8 | | |
| x | $=$ | x | $=9$ | | | |
| x | $=$ | x | $=10$ | | | |
| x | $=$ | x | $=11$ | | | |
| x | $=$ | x | $=12$ | | | |

2s Table

| 2 x | 0 | 0 | x | 2 | $=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | $=$ | x | $=$ | 2 | |
| x | $=$ | x | $=$ | 4 | |
| x | $=$ | x | $=$ | 6 | |
| x | $=$ | x | $=$ | 8 | |
| x | $=$ | x | $=$ | 10 | |
| x | $=$ | x | $=$ | 12 | |
| x | $=$ | x | $=$ | 14 | |
| x | $=$ | x | $=16$ | | |
| x | $=$ | x | $=18$ | | |
| x | $=$ | x | $=20$ | | |
| x | $=$ | x | $=22$ | | |
| x | $=$ | x | $=24$ | | |

Fun Math Facts!

\checkmark Any number multiplied by one equals itself! This is called the Identity Law!
\checkmark Any number multiplied by an even number, like 2 , will result in an answer which is also an even number! (Even numbers end in $0,2,4,6$, or 8). Any number which is not even (ends in $1,3,5,7$, or 9) is called odd. Look at these numbers. Circle the ones that are even. Underline the odd ones. (Answers in back) $\begin{array}{lllllllll}6 & 11 & 23 & 46 & 540 & 972 & 7234 & 22445 & 154869330\end{array}$

Math

$3 s$ and $4 s$ Tables

Fill in the missing numbers in each table. Read each math phrase out loud as you go. For example: three times zero equals zero times three equals zero. Fill them in one phrase (row) at a time.

3 s Table						
3 x	0	$=$	x	3	$=$	0
x	$=$	x	$=$	3		
x	$=$	x	$=$	6		
x	$=$	x	$=$	9		
x	$=$	x	$=$	12		
x	$=$	x	$=$	15		
x	$=$	x	$=18$			
x	$=$	x	$=21$			
x	$=$	x	$=24$			
x	$=$	x	$=27$			
x	$=$	x	$=30$			
x	$=$	x	$=33$			
x	$=$	x	$=36$			

4s Table

| 4 x | 0 | 0 | x | 4 | $=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | $=$ | x | $=$ | 4 | |
| x | $=$ | x | $=$ | 8 | |
| x | $=$ | x | $=$ | 12 | |
| x | $=$ | x | $=16$ | | |
| x | $=$ | x | $=$ | 20 | |
| x | $=$ | x | $=$ | 24 | |
| x | $=$ | x | $=$ | 28 | |
| x | $=$ | x | $=32$ | | |
| x | $=$ | x | $=36$ | | |
| x | $=$ | x | $=40$ | | |
| x | $=$ | x | $=44$ | | |
| x | $=$ | x | $=48$ | | |

The Commutative Law for multiplication states $a \times b=b \times a$. Choose any of the math facts above and use it to prove (show, demonstrate) this law.

The Identity Law for multiplication states a $\times 1=1 \times$ a. Put a star next to the math facts in the above tables which prove this law. (Answers in back)

Math

5s and 6s Tables

Fill in the missing numbers in each table. Read each math phrase out loud as you go. For example: one times five equals zero times five equals zero. Fill them in one phrase (row) at a time.

5 s Table						
5 x	0	0	x	5	$=$	0
x	$=$	x		$=$	5	
x	$=$	x	$=$	10		
x	$=$	x	$=$	15		
x	$=$	x	$=$	20		
x	$=$	x	$=$	25		
x	$=$	x	$=30$			
x	$=$	x	$=35$			
x	$=$	x	$=40$			
x	$=$	x	$=45$			
x	$=$	x	$=50$			
x	$=$	x	$=55$			
x	$=$	x	$=60$			

6s Table

6 x	0	$=$	x	6	$=$	0
x	$=$	x	$=$	6		
x	$=$	x	$=$	12		
x	$=$	x	$=$	18		
x	$=$	x	$=24$			
x	$=$	x	$=30$			
x	$=$	x	$=36$			
x	$=$	x	$=42$			
x	$=$	x	$=48$			
x	$=$	x	$=54$			
x	$=$	x	$=60$			
x	$=$	x	$=66$			
x	$=$	x	$=72$			

Fun Math Fact!

\checkmark Any number multiplied by 5 will result in an answer which ends in 0 or 5 !
This means that any number which ends in a 0 or 5 can be divided by 5 ! Look at these numbers. Circle the ones that can be divided by $5!$ (Answers in back) $\begin{array}{llllllllllll}425 & 78 & 22 & 90 & 63 & 501 & 235 & 34 & 10 & 972 & 45 & 1\end{array}$

Math

7s and 8s Tables

Fill in the missing numbers in each table. Read each math phrase out loud as you go. For example: seven times zero equals zero times seven equals zero. Fill them in one phrase (row) at a time.

7 s Table						
7 x	0	$=$	0	x	7	$=$
x	$=$	x		$=$	7	
x	$=$	x	$=$	14		
x	$=$	x	$=$	21		
x	$=$	x	$=$	28		
x	$=$	x	$=35$			
x	$=$	x	$=42$			
x	$=$	x	$=49$			
x	$=$	x	$=56$			
x	$=$	x	$=63$			
x	$=$	x	$=70$			
x	$=$	x	$=77$			
x	$=$	x	$=84$			

8s Table

| 8 x | 0 | 0 | x | 8 | $=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | $=$ | x | $=$ | 8 | |
| x | $=$ | x | $=$ | 16 | |
| x | $=$ | x | $=$ | 24 | |
| x | $=$ | x | $=32$ | | |
| x | $=$ | x | $=$ | 40 | |
| x | $=$ | x | $=$ | 48 | |
| x | $=$ | x | $=56$ | | |
| x | $=$ | x | $=64$ | | |
| x | $=$ | x | $=72$ | | |
| x | $=$ | x | $=80$ | | |
| x | $=$ | x | $=88$ | | |
| x | $=$ | x | $=96$ | | |

The Commutative Law for multiplication states $a \times b=b \times a$. Choose any of the math facts above and use it to prove (show, demonstrate) this law.

The Identity Law for multiplication states a $\times 1=1 \times$ a. Put a star next to the math facts in the above tables which prove this law. (Answers in back)

Math

9s and 10s Tables

Fill in the missing numbers in each table one phrase (row) at a time. Read each math phrase out loud as you go.

9s Table

| 9 x | 0 | 0 | x | 9 | $=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | $=$ | x | $=$ | 9 | |
| x | $=$ | x | $=$ | 18 | |
| x | $=$ | x | $=$ | 27 | |
| x | $=$ | x | $=$ | 36 | |
| x | $=$ | x | $=$ | 45 | |
| x | $=$ | x | $=$ | 54 | |
| x | $=$ | x | $=63$ | | |
| x | $=$ | x | $=72$ | | |
| x | $=$ | x | $=81$ | | |
| x | $=$ | x | $=90$ | | |
| x | $=$ | x | $=99$ | | |
| x | $=$ | x | $=108$ | | |

10s Table

| 10 x 0 | $=0 \mathrm{x} \quad 10$ | $=0$ | |
| ---: | :--- | ---: | :--- | :--- |
| x | $=$ | x | $=10$ |
| x | $=$ | x | $=20$ |
| x | $=$ | x | $=30$ |
| x | $=$ | x | $=40$ |
| x | $=$ | x | $=50$ |
| x | $=$ | x | $=60$ |
| x | $=$ | x | $=70$ |
| x | $=$ | x | $=80$ |
| x | $=$ | x | $=90$ |
| x | $=$ | x | $=100$ |
| x | $=$ | $=110$ | |
| x | $=\mathrm{x}$ | $=120$ | |

Fun Math Facts!

\checkmark Any number multiplied by 9 will result in an answer in which the digits also add up to 9 or a multiple of 9 . Look at the 9 s Table above. 18 is a multiple of 9. The digits in 18 are 1 and $8.1+8=9$! Choose another multiple of 9 from the table. Write it here: \qquad . Write the digits here: \qquad Add them up. What do they equal? \qquad Circle the numbers that are multiples of 9 :
720471206
333
828
9918
123453
\checkmark When multiplying any number by 10 , just add a zero at the end! Practice multiplying these numbers by $10.22 \times 10=$ \qquad $345 \times 10=$ \qquad (Answers in back)

Math

11s and 12s Tables

Fill in the missing numbers in each table one phrase (row) at a time. Read each math phrase out loud as you go.

11s Table

11 x	0	0	x	11	$=$	0
x	$=$	x		$=11$		
x	$=$	x		$=22$		
x	$=$	x		$=33$		
x	$=$	x		$=$	44	
x	$=$	x	$=$	55		
x	$=$	x	$=$	66		
x	$=$	x	$=77$			
x	$=$	x	$=88$			
x	$=$	x	$=99$			
x	$=$	x	$=110$			
x	$=$	x	$=121$			
x	$=$	x	$=132$			

12s Table

| 12 x O | $=0$ | x | 12 | $=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | $=$ | x | | $=12$ |
| x | $=$ | x | | $=24$ |
| x | $=$ | x | | $=36$ |
| x | $=$ | x | $=$ | 48 |
| x | $=$ | x | $=$ | 60 |
| x | $=$ | x | $=$ | 72 |
| x | $=$ | x | $=84$ | |
| x | $=$ | x | $=96$ | |
| x | $=$ | x | $=108$ | |
| x | $=$ | x | $=120$ | |
| x | $=$ | x | $=132$ | |
| x | $=$ | x | $=144$ | |

Fun Math Facts!

$\checkmark 11$ s are fun! Look at the 11 s Table. What do you notice about the products (the answer to a multiplication problem)? Look: $11 \times 7=77$! This works for each one up to $11 \times 9=99$! After that, there is a fun trick! Let's try 11×24. Take the multiplier, 24 in this case, and split it. So you have $2 \ldots 4$. Then add them up: $2+4=6$. Put that number (the sum) in between! So now you have 264! Now try some of your own! (Answers in back)
\qquad $11 \times 33=$ \qquad $42 \times 11=$ \qquad $11 \times 54=$ \qquad

Math

13s Table

Fill in the missing numbers in the table one phrase (row) at a time. Read each math phrase out loud as you go.

Multiplication Facts
Practice your division facts

Fun Math Facts!

\checkmark Did you know you can "unmultiply" a number? It's called dividing or division. You write it like this: $6 \div 3=2$ or 6 / $3=2$ and it is read "six divided by three equals two". Using the 13 s multiplication table above, solve the following division equations. (Answers in back) $117 \div 13=$ 65/5 = \qquad $169 \div 13=$ \qquad 91/13 = \qquad
Write your own from previous math facts tables!
\qquad \div \qquad $=$ \qquad
\qquad 1 \qquad $=$ \qquad

14s Table

Fill in the missing numbers in the table one phrase (row) at a time. Read each math phrase out loud as you go.

Multiplication Facts
Practice your division facts

Fun Math Facts!

\checkmark Do you remember how to "unmultiply" a number, or divide? Using the 14 s table above, solve the following division equations. (Answers in back)
$112 \div 14=$ \qquad 70/5 =
$168 \div 14=$ \qquad 182/13 = \qquad
Write your own from previous math facts tables!
\qquad
\qquad $1=$ $=$ \qquad

Math

15s Table

Fill in the missing numbers in the table one phrase (row) at a time. Read each math phrase out loud as you go.

Multiplication Facts

15	x	0					x	15	$=$	$0 \longrightarrow$	Rule:	: You c	cannot	not divide by zero (0)
15	x						x	15	$=$	$15 \longrightarrow$	15	$\div 1$	$=$	15
	x			$=$			x		$=$	\rightarrow	30	$\div 2$	=	
	x			$=$			x		=	\rightarrow		1	=	
	x			=			x		=	\rightarrow		1	$=$	
	x			=			x		=	\rightarrow		\div	=	
	x			$=$			x		=	\rightarrow		\div	=	
	x			$=$			x		=	\rightarrow		1	=	
	x			$=$			x		=	\rightarrow		1	=	
	x			$=$			x		=			\div	=	
	x			$=$			x		=	\rightarrow		\div	=	
	x			$=$			x		=	\rightarrow		1	$=$	
	x			$=$			x		=	\rightarrow		1	=	
	x			$=$			x		=	\rightarrow		\div	=	
	x			$=$			x		$=$	\longrightarrow		\div	=	

The Commutative Law for multiplication states $a \times b=b \times a$. Choose any of the math facts above and use it to prove (show, demonstrate) this law.

The Identity Law for multiplication states a $\times 1=1 \times$ a. Put a star next to the math fact in the above table which proves this law.

Math

Squares (up to 15×15)

Complete the squares. Read each aloud as you go.
1^{2} or $1 \times 1=1$
2^{2} or $2 \times 2=4$
3^{2} or $\begin{array}{lll}\mathrm{x} & = \\ 4^{2} \text { or } \mathrm{x} & = \\ 5^{2} \text { or } \mathrm{x} & = \\ 6^{2} \text { or } \mathrm{x} & = \\ .\end{array}$

7^{2} or $\frac{\mathrm{x}}{}=$
8^{2} or $\mathrm{x}=$

9^{2} or $\mathrm{x}=$

Fun Math Fact!

Any number, we'll call it " a ", squared $\left(a^{2}\right)$, is the same as writing a times a $(a \times a)$.

So $\quad a^{2}=a \times a$.

1. Using this grid, draw a square of any size you like. How long is each side?
2. Count how many grid squares are inside the square you drew.
3. Using the grid, draw squares to prove (demonstrate, show) that at least 5 of your answers in the above math phrases are correct.

Cubes (up to $10 \times 10 \times 10$)

The Volume (V) of a Cube equals the length of its side (s) cubed $\left(^{3}\right)\left(V=s^{3}\right)$, or the length (1) times its width (w) times its height (h) (V=1xwxh). So a cube 3 units long has an area of 27 ($3^{3}=27$ or $3 \times 3 \times 3=27$).

Complete the cubes. Read each aloud as you go.

Math

Liquid Equivalents

Abbreviations

$$
g \text { = gallon }
$$

$q t=q u a r t$
$p t=p i n t$
$\mathrm{c}=\mathrm{cup}$
fl. oz. = fluid ounce

Tbsp $($ or Tb or T$)=$
tablespoon
tsp (or t) $=$ teaspoon

Using the picture above, fill in the correct liquid equivalents (conversions).
\qquad teaspoon $(\mathrm{s})=1$ tablespoon
\ldots fluid ounce $(\mathrm{s})=1$ cup
\qquad tablespoon(s) = 1 fluid ounce
\qquad $\operatorname{cup}(s)=1$ pint
\qquad $\operatorname{pint}(\mathrm{s})=1$ quart
\qquad quart($(\mathrm{s})=1$ gallon
\qquad tablespoon(s) $=1 / 4$ cup
___ fluid ounce $(\mathrm{s})=1$ cup
\qquad fluid ounce $(\mathrm{s})=1$ gallon
\qquad $\operatorname{cup}(\mathrm{s})=1$ gallon

Math

Linear Equivalents

This is a picture of a one-foot ruler. How many inches are in one foot?

3 feet $\left(3 \mathrm{ft}\right.$. or $\left.3^{\prime}\right)=1$ yard (1 yd . $)$

Activity!

Ask your parents to help you plot a 1-mile route in your neighborhood and go for a walk, bike-ride, or run!

How many feet are in a yard?

Depends on how many people are in it!

Metric Measurements

The metric system is based on 10. The names for metric measurements use Greek and Latin roots and prefixes. The root word tells you what is being measured. The prefix tells you how many. Read this information before continuing.

You can know exactly how many or much of what by knowing the prefixes and suffixes.
Examples: a megagram is $1,000,000$ units of weight and a picometer is one trillionth (.0000000001) of a unit of distance. Solve these.

A nanoliter is __ units of: distance volume weight
A \qquad is one millionth (.0001) of a unit of weight.

Metric abbreviations: the first letter is for the prefix, the second letter (or if there's only one letter) is for the measure. So 1 cm is one centimeter. Use the information above to solve these: nl \qquad kg \qquad
How would you abbreviate these: decameter \qquad microliter \qquad

Math

Area of a Rectangle

Fun Math Fact!

The area of a rectangle equals its length times its width.
Area (A) $=$ length (1) x width (w)

$$
\mathrm{A}=1 \mathrm{xw} \quad \text { or } \quad 1 \mathrm{xw}=\mathrm{A}
$$

1. Using this grid, draw a rectangle any size you like.

How long is its length? \qquad width?
2. Using the formula for the area of a rectangle, what is the area of your rectangle? $\mathrm{x}=\quad$ units squared (we say this because each unit is a square!)
3. Count how many grid squares are inside the square you drew. \qquad Does the number match the answer to your equation in \#2? yes no
4. Repeat this process with several different size and shape rectangles.

Math

Area of a Square

Fun Math Fact!

The area of a square equals length of its side squared. Any number, we'll call it " a ", squared $\left(\mathrm{a}^{2}\right)$, is the same as writing a times a $(\mathrm{a} \times \mathrm{a})$.

So $a^{2}=a x a$. Do you remember the area of a

Complete the squares. Read each aloud as you go.

10^{2} or $\mathrm{x}=$
11^{2} or $\mathrm{x}=$

Fill in the equations to the right of the grid. As you do so, draw squares in the grid of the same size as your problem. Does the answer on the right match the number of grid squares inside your square?

Math

Area of a Triangle

-																								
-																								

Fun Math Fact!

The area of a triangle equals one-half base (b) times height (h). Rectangles their areas. can be divided diagonally to create two triangles.

triangle is the "length" of its rectangle,
and its height is its rectangle's "width", so $(1 \times w)=(b x h)$. If the area of a triangle is always half of its rectangle, then the area of a triangle is $1 / 2(1 \times \mathrm{w})$. We're working with triangles so we write it $\underline{1 / 2(b x h)}$, or $(b x h) \div 2$.

Draw these triangles in the grid. Find

b	h		area $=\mathrm{bxh} \div 2$			
2	4	(x		\div	
1	6	$($	x			
7	10	$($	x			
14	6	$($	x			
6	7	$($	x			
5	5	(x			
9	11	$($	x			
13	12	$($	x			
11	1	$($	x			$=$
2	15	(x		\div	$=$

Math

Area of a Circle

Irea of a circle $a=\pi r^{2}$

 takes up
$\pi=$ pi... a never-ending number used to compare a circle's diameter and circumference. You can use 3.14.
$r=$ radius... the distance from the center of the circle to the edge

Using a calculator, compute the area of some circles. Remember, $a=3.14 \times r^{2}$ and $r^{2}=r \times r$.

If $\mathrm{r}=1$, then $\mathrm{a}=$ \qquad $\left(3.14 \times 1^{2}\right)$

If $r=2$, then $a=$ \qquad

If $r=3$, then $a=$ \qquad
If $r=4$, then $a=$ \qquad
Make your own! If $r=$ \qquad then $\mathrm{a}=$ \qquad

Math

Circumference of a Circle

$C=$ circumference... the distance around a circle
$\pi=$ pi... a never-ending number used to compare a circle's diameter and circumference. You can use 3.14.
$r=$ radius... the distance from the center of the circle to the edge

Using a calculator, compute the area of some circles. Remember, $\mathrm{C}=2 \times 3.14 \times \mathrm{r}$.

If $\mathrm{r}=1$ then $\mathrm{C}=$ \qquad $(2 \times 3.14 \times 1)$

If $r=2$ then $C=$ \qquad
If $r=3$ then $C=$ \qquad

265358979323 84626433832795 02884197169399375 1058209749445923078 164062862089986280 3482534211706798214808 651328230664709384460955058223 17253594081284811174502841027019385211055 59644629488549933819644128810975665933446128475648233786
 nawn 2

If $r=4$ then $C=$ \qquad

Make your own! If $r=$ \qquad then $C=$ \qquad

Math

The Associative Law

For Addition

$$
(a+b)+c=a+(b+c)
$$

These letters symbolize numbers. They are called "unknowns". This formula, or equation, works for any numbers.

Here's an example:

If $a=2, b=3$, and $c=4$, then

$$
\begin{gathered}
(a+b)+c=a+(b+c) \\
\text { becomes }
\end{gathered}
$$

$$
(2+3)+4=2+(3+4) \text {, then }
$$

$$
(5)+4=2+(7) \text {, then }
$$

$$
9=9
$$

Prove the associative law for addition.
Write the associative law here:

Choose a number for each unknown.
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{C}=$ \qquad
Now replace the unknowns in the equation with the numbers you chose and solve.

For Multiplication

$$
(a \times b) \times c=a \times(b \times c)
$$

As with the associative law for addition, this equation uses unknowns and works for any numbers.

Here's an example:

If $a=2, b=3$, and $c=4$, then $(a \times b) \times c=a \times(b \times c)$ becomes $(2 \times 3) \times 4=2 \times(3 \times 4)$, then
(6) $x 4=2 x(12)$, then $24=24$

Prove the associative law for multiplication.
Write the associative law here:

Choose a number for each unknown.
$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{C}=$ \qquad
Now replace the unknowns in the equation with the numbers you chose and solve.

The Commutative Law

For Addition

$$
a+b=b+a
$$

These letters symbolize numbers. They are called "unknowns". This formula, or equation, works for any numbers.

$$
\begin{aligned}
& \text { Here's an example: } \\
& \text { If } a=2 \text { and } b=3 \text {, then } \\
& a+b=b+a \\
& \text { becomes } \\
& 2+3=3+2 \text {, then } \\
& 5=5
\end{aligned} .
$$

Prove the commutative law for addition.
Write the commutative law here:

Choose a number for each unknown.
$\mathrm{a}=$ \qquad $b=$ \qquad
Now replace the unknowns in the equation with the numbers you chose and solve.
\qquad
\qquad $=+$ $+$
\qquad $=$ \qquad
\qquad x \qquad $=$ \qquad x \qquad
\qquad $=$ \qquad

Math

The Distributive Law

$$
a \times(b+c)=(a \times b)+(a \times c)
$$

These letters symbolize numbers. They are called "unknowns". This formula, or equation, works for any numbers.

Here's an example:

$$
\begin{aligned}
& \text { If } \mathrm{a}=2, \mathrm{~b}=3 \text {, and } \mathrm{c}=4 \text { then } \\
& \mathrm{a} \times(\mathrm{b}+\mathrm{c})=(\mathrm{a} \times \mathrm{b})+(\mathrm{a} \times \mathrm{c}) \\
& \text { becomes } \\
& 2 \times(3+4)=(2 \times 3)+(2 \times 4) \text {, then } \\
& 2 \times(7)=(6)+(8) \text {, then } \\
& 14=14
\end{aligned}
$$

Prove the distributive law.
Write the distributive law here:

Choose a number for each unknown.
$a=$ \qquad $b=$ \qquad $\mathrm{C}=$ \qquad
Now replace the unknowns in the equation with the numbers you chose and solve.

\qquad $=$ \qquad

Math

The Identity Law

For Addition

$$
a+0=a
$$

The letter "a" symbolizes an unknown number. This formula, or equation, works for any number.

Here's an example:
If $a=2$, then
$a+0=a \quad$ becomes $\quad 2+0=2$

Prove the identity law for addition.
Write the identify law here:

Choose a number for the unknown.
$\mathfrak{a}=$ \qquad
Now replace the unknown in the equation with the number you chose and solve.

For Multiplication

$\mathrm{a} \times 1=\mathrm{a}$

The letter "a" symbolizes an unknown number. This formula, or equation, works for any number.

Here's an example:

If $a=2$, then
$a \times 1=a \quad b e c o m e s$
$2 \times 1=2$

Prove the identity law for multiplication. Write the identify law here:

Choose a number for the unknown.

$$
a=
$$

\qquad
Now replace the unknown in the equation with the number you chose and solve.

